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Optical Parametric Oscillator Longitudinal Modes Suppression
Based on Smith Predictor Control Scheme

Ali Salehiomran, Rahi Modirnia, Benoit Boulet, and Martin Rochette

Abstract— Fiber optical parametric oscillators (FOPOs)
contain multiple longitudinal modes arising from the hundreds
of meters to a kilometer scale length of their cavity. To obtain
better understanding of the longitudinal modes and to find out
how to suppress them, a model for the operation of FOPOs
is introduced. This model utilizes the sinusoidal-input describing
function (SIDF) as a quasi-linear approximation of the nonlinear
dynamics of parametric amplification. Applying this model, the
SIDF of the FOPO is derived, which predicts that the origin of
the longitudinal modes is the presence of the cavity round-trip
delay term in the characteristic equation (the denominator) of
the transfer function. To eliminate the effect of the delay term,
a modified Smith predictor control scheme has been applied to
the FOPO cavity, and a control algorithm is developed. This
algorithm has been numerically analyzed and experimentally
implemented, where the results indicate drastic suppression of
the longitudinal modes.

Index Terms— Fiber optical parametric oscillator (FOPO),
longitudinal modes, sinusoidal-input describing function (SIDF),
Smith predictor.

I. INTRODUCTION

F IBER optical parametric amplifiers and oscillators
(FOPAs, FOPOs) have attracted widespread interest

because of their potential applications in optical signal
processing and optical fiber communication systems [1]. Their
applications include ultrafast all-optical signal sampling, high-
repetition rate pulse train generation, and time division multi-
plexing [2]. In particular, FOPOs are capable of generating
coherent light with broad continuous wavelength tunability
[3], [4]. They convert a fixed laser source into a tunable
laser source. This conversion takes place inside a feedback
loop (the resonant cavity) containing a nonlinear medium.
Light confined in the cavity reflect multiple times producing
standing waves at certain resonance frequencies. The standing
wave patterns produced are called longitudinal modes [5].
The required length of the nonlinear medium depends on its
constitutive material. Silica-based fibers are mostly used as the
nonlinear medium and their length is in the order of several
hundreds of meters [6], [7]. As a result, the spacing between
the longitudinal modes is in the order of several hundreds
of kHz. With the typical optical filter having a bandwidth of
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several tens of GHz, the longitudinal modes of such a laser
cavity cannot be filtered down to single mode. Consequently,
FOPOs due to their large cavity length are multimode laser
sources. The output power from a multimode FOPO suffers
from noisy intensity fluctuations [5]. Thus, it is desired to
suppress the longitudinal modes of the FOPO as much as
possible and achieve single longitudinal mode operation.
Various approaches have been applied to achieve single

longitudinal modes (SLM) operation [8]–[10]. A fiber loop
mirror with Erbium-doped fiber (EDF) as a saturable absorber
has been proposed to attain SLM operation in [8]. In [9],
SLM operation is achieved by a high finesse fiber Bragg
grating (FBG). In another approach, a multiring cavity is
applied to obtain SLM operation [10]. The EDF as a saturable
absorber comes with a major drawback that the useful spectral
range is limited to the absorption spectrum of the EDF
(1530–1570 nm). Applying a high finesse FBG restricts the
tuning range of the laser to <10 nm [9]. Approaches based
on multiring cavities require few centimeters long loops or
fiber Fabry-Perot tunable filter (FFP-TF) to obtain GHz order
free spectral range (FSR) and force SLM operation.
In this brief, we introduce and experimentally demonstrate

a multiring cavity structure to suppress the longitudinal modes
of FOPOs. In contrary to other structures of longitudinal
modes suppression, this structure is applicable to arbitrary
wavelengths. Thus, this structure is considered as a prominent
candidate to suppress longitudinal modes at unconventional
wavelengths (e.g., 2–5 μm), where other methods are not
applicable. In addition, this structure does not require few
centimeters long loops or FFP-TF. Therefore, in comparison
with other methods the complexity and cost of design are
reduced. The control strategy used in this structure is the Smith
predictor scheme, which is a model-based internal control
technique and has been specifically designed to address delay
in closed-loop system [11]. The Smith predictor technique is
of interest in this application, because multiple longitudinal
modes originate from the propagation delay inside the cavity
of FOPO. Since the Smith predictor technique is specifically
designed for delayed-systems, it overcomes the propagation
delay of the cavity and suppresses longitudinal modes. The
Smith predictor utilizes the model of the dynamic behavior of
the system to deal with time delays in the system, eliminating
the delay term in the denominator of the overall closed-loop
transfer function.
The rest of this brief is organized as follows. In Section II,

the problem of the longitudinal modes and their origin is
thoroughly discussed. Then in Section III, a quasi-linear
model of the dynamics of the FOPO based on the sinusoidal-
input describing function (SIDF) is established. The Smith
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Fig. 1. Frequency assignment of the degenerate (one-pump) FWM.

Fig. 2. Schematic of the experimental setup for the realization of a FOPA
and measuring the parametric gain (HNLF).

predictor scheme is introduced in Section IV, and is applied
to the developed model of the system in Section V, after
which the block diagram of the system is obtained, and the
closed-loop transfer function of the system is derived. The
control algorithm is developed in Section VI. In Section
VII, the designed controller is then tested on the system as
the closed-loop system is numerically analyzed in MATLAB

to examine the functionality and performance of the pro-
posed method. Finally, in Section VIII, to verify the valid-
ity of the results, the closed-loop system is experimentally
implemented.

II. DESCRIPTION OF THE PROBLEM

The operation of FOPAs and FOPOs is based on Kerr
nonlinearity that arises from the intensity dependence of the
refractive index. Kerr nonlinearity results in various non-
linear phenomena among which four-wave mixing (FWM)
is the source of parametric gain inside optical fibers [12].
As the name FWM suggests, in this nonlinear phenomenon
four optical waves at different frequencies are coupled together
in a nonlinear fashion. Degenerate FWM is a special case,
where two of these frequencies coincide. Fig. 1 shows the
frequency assignment of the degenerate or one-pump FWM.
Consider three optical waves, namely a pump, signal and idler,
oscillating at frequencies ωp , ωs , and ωi , respectively. A pump
laser is a continuous wave (CW) laser source that supplies
energy for the FWM process. Generally, pumps have more
power than the signal as presented in Fig. 1 by the length of
the arrows. As the signal co-propagates with the pump inside
the nonlinear medium, energy is transferred from the pump
to the signal resulting in amplification of the signal. At the
same time, a new wave (idler) is generated following the rule
of energy conservation [2], [12]

ωs + ωi = 2ωp. (1)

Fig. 3. Experimental measurement of the parametric gain-spectrum
using the setup shown in Fig. 2. HNLF has nonlinearity coefficient of
γ = 13 W−1km−1 and propagation length of L = 1 km. The pump power
at the input of HNLF is 200 mW.

The amount of parametric gain is proportional to the length
of the nonlinear medium (interaction length of the waves),
the nonlinearity of the medium represented by the nonlin-
earity coefficient γ , and the power of the pump. Momentum
conservation is the other criteria that limit the bandwidth of
the gain-spectrum. Hence, gain is observed over a limited
bandwidth [12].
Fig. 2 shows a setup for the demonstration of paramet-

ric amplification. In our experiment, a silica-based highly
nonlinear fiber (HNLF) with the nonlinearity coefficient of
γ = 13 W−1km−1 is used as a gain medium. The signal is
amplified inside the HNLF due to FWM and a FOPA is real-
ized. A CW laser source at the wavelength of 1557 nm with the
power of 200 mW is used as a pump. The pump is combined
equally to a tunable laser signal by means of a 50/50 optical
coupler. An optical coupler combines two optical input fields
by a certain power coupling ratio and delivers two optical
output fields. A 90/10 optical coupler delivers 90% of the
power the first input plus 10% of the power of the second input
at the first output. Similarly, 10% of the power of the first input
plus 90% of the power of the second input are delivered at the
second output. As shown in Fig. 2, the output of the coupler,
which is combined pump and signal, is sent into the HNLF.
FWM takes place inside the HNLF, and as a result, the signal
is amplified. Fig. 3 shows an experimental measurement of the
parametric gain. Due to momentum conservation criteria, the
gain-spectrum has a limited bandwidth [12].
Fig. 4 depicts the schematics of a typical FOPO. A pump

laser at wavelength λP is supplied externally and passes
through a feedback loop composed of a HNLF, a bandpass
filter (BPF), three optical couplers C , C5, and C6, and two
connecting fibers L2 and L3. While propagating inside the
nonlinear medium, the pump provides gain to every signal
inside its gain-spectrum via FWM. The amplified spectrum is
filtered by the BPF at the central wavelength λS , which sets the
operation wavelength. The couplers C and C5 serve to inject
the pump in the cavity, sample the circulating signal, and close
the feedback loop. Optical power in the cavity builds up into
a laser oscillation once the gain at the operation wavelength
equals or exceeds the net loss of the cavity. Insertion loss of the
HNLF, BPF, and optical couplers are the main sources of loss



2066 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 22, NO. 5, SEPTEMBER 2014

Fig. 4. Schematic of the experimental setup used to implement a FOPO.
HNLF, BPF, C , C5, and C6 represent optical couplers, and L2 and L3
represent connecting fibers.

Fig. 5. Measured RF spectrum of the output of FOPO of Fig. 4. Due to
the propagation length of the medium (1 km), the mode spacing among
longitudinal modes is 200 kHz.

inside the cavity. By means of a 90/10 optical coupler (C6),
10% of the power of the signal circulating inside the cavity
is sampled and is divided into two branches. One branch is
fed into the optical spectrum analyzer (OSA) and the other
one goes into a photodiode. OSA shows the spectrum of
the signal around the optical carrier. The resolution of OSA
(Agilent 86142B) is ∼6 GHz around the carrier at the wave-
length of 1550 nm or the frequency of 193 THz. The output
of the photodiode is proportional to the input intensity fluctua-
tions. Thus, the photodiode converts the optical power into an
electrical signal amplitude. In this process, the optical carrier
is omitted, therefore a 1 kHz resolution is achievable [13].
To observe the longitudinal modes, the laser output is sent
to a 45 GHz photodiode (U2TBPDV2020R) and then to an
RF spectrum analyzer. OSA provides the big picture, while the
RF spectrum analyzer provides the detailed spectrum around
the frequency of operation.
Fig. 5 shows the RF spectrum of the output of the FOPO

of Fig. 4. It is observed that the frequency spacing among the
longitudinal modes, also known as FSR, is 200 kHz. This is
in agreement with the theoretical expectations [5]

FSR = c0
nL

(2)

where L is the length of the FOPO cavity, n is the refractive
index of the propagation medium, and c0 is the speed of light

Fig. 6. Block diagram of an optical coupler. c and d represent throughput
and cross-path coupling coefficients.

Fig. 7. Block diagram of the nonlinear model of the HNLF and BPF.
HNL represents the SIDF of the nonlinear processes. RNL and TNL denote
the loss and propagation delay of the HNLF and BPF.

in vacuum. In the experimental setup shown in Fig. 4, the
cavity length is 1 km, and the refractive index is 1.5. Conse-
quently, the mode spacing calculated from (2) is 200 kHz. This
narrow frequency spacing leads to the fact that many of these
modes pass through the BPF (typical bandwidth of 50 GHz).
Parametric oscillation in nature is a nonlinear process. The

role of the nonlinear processes inside a FOPO cavity is to
provide gain. To analyze the effects of the nonlinear element,
a model of the linear part of the FOPO cavity is required. In the
Section III, after the derivation of this model in the vicinity
of the operation frequency, the block diagram of the FOPO
system is obtained and the closed-loop SIDF is derived [14].
This transfer function, which includes the nonlinearity of the
parametric amplification, predicts the closed-loop dynamics.

III. NONLINEAR MODEL OF FOPO

To obtain a model for the operation of the FOPO shown
in Fig. 4, models for HNLF, optical connecting fibers, and
optical couplers are required. Fig. 6 shows the equivalent block
diagram of an optical coupler. The two input fields E1 and E2
are related to the two output fields E3 and E4 by a coupled
equation [15] [

E4

E3

]
=

[
c − jd

− jd c

][
E1

E2

]
(3)

where c and d denote the throughput and cross-path coupling
coefficients, respectively. Fig. 7 shows the nonlinear model of
the HNLF and BPF. In this model HNL = √

GNLe− j�NL refers
to the SIDF of the nonlinear processes [14], GNL and �NL are
the nonlinear gain and phase shift [16], RNL is the insertion
loss of the nonlinear medium and BPF, TNL is the propagation
delay of the nonlinear medium and BPF. Fig. 8 shows the
equivalent block diagram of a connecting optical fiber, such
as L2 and L3. This model consists of a loss element denoted
by Ri and a propagation delay element denoted by TLi.
Fig. 9 shows the block diagram of the FOPO in a con-

ventional feedback structure. This model is valid only at the
wavelength of operation (λs ) established by the BPF. In this
model HNL, RNL, and TNL represent nonlinear processes as
introduced in Fig. 7, and R2, R3, TL2, and TL3 represent
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Fig. 8. Block diagram of a connecting optical fiber. Ri , and TLi denote the
loss and propagation delay of a connecting optical fiber.

Fig. 9. Block diagram of a FOPO in the vicinity of the operation frequency
(λs ), in a conventional feedback structure.

the insertion losses and propagation delays of the connecting
fibers. The input to output transfer function becomes [16]

H ( jω) = B1e− jω(TNL+TL2)

1− B2e− jω(TNL+TL2+TL3)
(4)

where B1 = HNL(ω)RNL(ω)R2, and B2 = HNL(ω)
RNL(ω)R2R3dd5. As (4) implies, the origin of the longitudinal
modes is the existence of the delay term at the characteristic
equation. Therefore, there is a need for a time-delay com-
pensation control method to eliminate the longitudinal modes
or increase the spacing between successive modes. There are
several time-delay compensation methods, one of the most
important of which is the Smith predictor method.

IV. SMITH PREDICTOR CONTROL TECHNIQUE

To compensate for time delays in a system, several control
strategies have been proposed to improve the performance of
the closed-loop system. One of the best known and most
effective strategies is the Smith predictor control method.
It is proven that the performance of a controller incorporating
the Smith predictor is better than a conventional type con-
troller [17]. Fig. 10 shows the block diagram of the Smith
predictor control structure [11].
To use the Smith predictor control method, the modeled

dynamics of the actual system needs to be derived. The model
of the actual system has to be separable into two sections of
delayed and un-delayed dynamics of the system. The model
of the system is Hest( jω) and is described by Hud( jω)e− jωT ,
where Hud( jω) represents the part without the delay, and
e− jωT represents the time-delay of the system. The idea of
incorporating the Smith predictor technique is to have the
controller act on the undelayed part of the system so it can
provide a faster reaction to the changes in the system, resulting
in improved tracking of the input. In other words, the Smith
predictor masks the delay of the system for the controller, so
that the controller acts more efficiently [17]. Fig. 11 depicts
the equivalent block diagram of the Smith predictor technique
in a conventional type feedback loop. The implementation of
the Smith predictor in the conventional type feedback loop
shown in Fig. 11 is more practical in photonics environment,
thus this version is applied to the FOPO system.

Fig. 10. Block diagram of the Smith predictor control scheme.

Fig. 11. Block diagram of the Smith predictor technique in a conventional
type feedback loop structure.

Fig. 12. Block diagram of the Smith predictor technique in a conventional
type feedback loop structure with focus on inner feedback loop.

V. APPLICATION OF THE SMITH PREDICTOR CONTROL
TECHNIQUE TO THE FOPO SYSTEM

Fig. 12 shows the block diagram of the conventional type
Smith predictor feedback loop structure with focus on inner
feedback loop. To apply the Smith predictor control method to
the FOPO system, there have to be slight modifications applied
to this structure due to limitations in implementation of the
control algorithm in a practical optical setup. Fig. 13 shows
the block diagram of the modified Smith predictor technique
system applied to the FOPO system. In this structure, the
order of appearance of the plant and controller has changed.
This is to avoid influencing the nonlinear gain of the HNLF
in the actual physical implementation of the system. Since
this system is a single input single output system, the order
of appearance of the plant and controller does not matter
in a mathematical sense. Comparing Figs. 12 to 13, it is
observed that Hud( jω) is replaced by unity. The reasons for
this modification are the fact that the undelayed part of the
plant consists of loss and gain coefficients, and in the steady-
state gain and loss are in equilibrium and cancel out. Thus,
the dynamics of the system Hp is replaced by a pure delay
term e− jωT ′

. Also, as Figs. 12 and 13 are compared, Hc is
moved inside the Smith predictor loop, and this is to avoid
influencing the original gain and loss of the main cavity. After
these modifications, the transfer function of the modified Smith
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Fig. 13. Block diagram of the modified Smith predictor technique system
applied to the FOPO system.

predictor becomes

H (ω) = e− jωT ′

2− Hce− jωT + e− jωT ′ . (5)

In case there is no model error T = T ′, and Hc = 1 the
transfer function reduces to

H (ω) = e− jωT ′

2
. (6)

This shows that the modified structure is capable of eliminat-
ing the delay term from the characteristic equation. Moreover,
Hc can be applied to compensate unpredicted losses inside the
feedback loop of Smith predictor, as discussed in Section VI.
Figs. 14 and 15 show the experimental implementation

and the equivalent linear model of the Smith predictor for
the FOPO system, respectively. In this model, Ri denotes
the connection and propagation losses related to i th fiber,
TLi represents the propagation delay of i th fiber, ci , and di

are the throughput and cross-path coupling ratios of i th
optical coupler, Rpi indicates the insertion and polarization
misalignment loss of i th polarization controller, T2 represents
the propagation delay of HNLF 2, R f 2 is the insertion loss of
HNLF 2, and Gc represents the controller gain. The required
gain is provided by an Erbium-doped fiber amplifier (EDFA).
Polarization controllers (PC), PC1 and PC2, ensure the super-
position of the pump and signal polarization states in the cavity
to attain maximum nonlinear gain. Based on the block diagram
of Fig. 15, the transfer function of the Smith predictor becomes

HSmith = R1e− jωTL1

1+ B3e− jωT3′ − B4e− jωT4′
(7)

B3 = Gcd1d2c3c4R1R4R5R7Rp1R f 2

B4 = d1d2d3d4R1R4R6R7Rp2

T3
′ = T2 + TL1 + TL4 + TL5 + TL7

T4
′ = TL1 + TL4 + TL6 + TL7. (8)

Figs. 14 and 15 show the experimental setup and block
diagram of the FOPO after the application of Smith predictor.
Based on this model and the transfer function of the Smith
predictor derived in (7), the closed-loop transfer function of
FOPO becomes

H (ω) = B1e− jωT1′

1+ B2e− jωT2 ′ + B3e− jωT3 ′ − B4e− jωT4′
(9)

B1 = c1c2R1R2
√

GNLRNL

B2 = dd5c1c2R1R2R3RNL
√

GNL = Rcav
√

GNL
B3 = Gcd1d2c3c4R1R4R5R7Rp1R f 2

B4 = d1d2d3d4R1R4R6R7Rp2

T1
′ = T1 + TL1 + TL2

T2
′ = T1 + TL1 + TL2 + TL3

T3
′ = T2 + TL1 + TL4 + TL5 + TL7

T4
′ = TL1 + TL4 + TL6 + TL7 (10)

where T1 denotes the propagation delay of the HNLF 1, RNL is
the insertion loss of the HNLF 1 and BPF, and GNL is the
nonlinear gain due to FWM inside the HNLF 1. A closer
look at the denominator of the transfer function shows that
each exponential term is relevant to one of the loops of the
structure of Fig. 14, as predicted by Mason’s rule. For instance,
B2e− jωT ′

2 is associated with the loop containing HNLF 1, L1,
L2, and L3 (loop 1). B2 is the transmittance of the elements
in this loop and T2′ is the total propagation delay in this loop.
Similarly, B3e− jωT ′

3 is associated with the loop containing L1,
L4, L5, HNLF 2, and L7 (loop 2), and B4e− jωT ′

4 is associated
with the loop containing L1, L4, L6, and L7 (loop 3). After
obtaining the closed-loop transfer function, in the next section
the control algorithm to achieve single mode type behavior in
the FOPO system is discussed.

VI. CONTROL ALGORITHM

After the closed-loop system and the related transfer func-
tion are presented, the main problem of eliminating the
redundant modes is tackled. An equation for the gain of the
controller (Gc) and the delay elements T2′, T3′, and T4′ has to
be found, such that only selected modes remain while the rest
of the modes are filtered or eliminated. To achieve this, the
goal is to amplify certain modes while cutting off others to
create a significant difference in amplitude between successive
modes, thus achieving single mode type behavior. To analyze
the magnitude of the modes, the first step is to obtain the
magnitude of the closed-loop transfer function in (9)

|H (ω)|2 = B12∣∣1+ B2e− jωT2 ′ + B3e− jωT3 ′ − B4e− jωT4′
∣∣2 .
(11)

In the FOPO, to obtain steady-state oscillations, the closed-
loop characteristic (denominator of (9)) is set to zero [14]

1+ B2e
− jωT2 ′ + B3e

− jωT3′ − B4e
− jωT4 ′ = 0. (12)

After obtaining the magnitude of the transfer function and the
condition of oscillation, the complex exponential terms of the
denominator of (11), denoted by D( jω), are combined and
expanded as follows:

D ( jω)

= 1+ B22 + B23 + B24 + 2B2 cos
(
ωT2

′) + 2B3 cos
(
ωT3

′)
−2B4 cos

(
ωT4

′) + 2B2B3 cos
(
ω

(
T3

′ − T2
′))

−2B3B4 cos
(
ω

(
T4

′ − T3
′)) − 2B2B4 cos

(
ω

(
T4

′ − T2
′))

= 1+ B22 + B23 + B24 + 2B2 cos
(
ωT2

′) + 2B3 cos
(
ωT3

′)
−2B4 cos

(
ωT4

′) + 2B2B3
(
cos

(
ωT2

′) cos (ωT3
′)

+ sin (
ωT2

′) sin (
ωT3

′) ) − 2B3B4
(
cos

(
ωT4

′) cos (ωT3
′)

+ sin (
ωT4

′) sin (
ωT3

′) ) − 2B2B4
(
cos

(
ωT2

′) cos (ωT4
′)

+ sin (
ωT2

′) sin (
ωT4

′) )
. (13)
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Fig. 14. Schematic of the experimental setup of the FOPO after the application of Smith predictor. PC, EDFA, BPF, and HNLF.

Fig. 15. Block diagram of the FOPO after the application of Smith predictor.

Examining (13), at a certain frequency ωmax, where
cos(ωmaxT2′) = cos(ωmaxT3′) = −1 , cos(ωmaxT4′) = 1 the
magnitude of the transfer function becomes

|H (ωmax)|2 = B12

(1− B2 − B3 − B4)2
. (14)

At this frequency, the denominator of (11) will be
minimum while the magnitude of the transfer function will
be at maximum. Therefore, the mode which exists on the
frequency ωmax will be at maximum amplitude compared with
the other modes. The goal is to amplify the amplitude of
the mode at ωmax even further to create a major separation
between the dominant mode at ωmax and the other successive
modes. To achieve this goal, the condition of oscillation at
ωmax is 1 − B2 − B3 − B4 = 0. Substituting the value of B2
from (10), and separating the linear and nonlinear parts, the
oscillation condition reduces to√

GNL = 1− B3 − B4
Rcav

. (15)

The nonlinearity of the parametric amplification behaves in a
way that, as the output power increases, the nonlinear gain
decreases. Therefore, to achieve the highest output power at
frequency ωmax, the nonlinear gain must be at its minimum
value GNL = 1. Setting GNL = 1, (15) is written as

1− Rcav − B3 − B4 = 0. (16)

If (16) is achieved, the output power at ωmax will be at the
maximum possible value. Since B4 and Rcav are constant
values, the only adjustable parameter, to ensure that (16) holds,
is B3. B3 in (9), can be written as B3 = Gc B3′, where B3′ =

d1d2c3c4R1R4R5R7Rp1R f 2. Therefore, the gain of the con-
troller which exists in B3 has to be adjusted. Substituting B3 in
(16) the optimum controller gain Gcopt, that results in the max-
imum output power restricted by nonlinearity, is obtained as

Gcopt = 1− Rcav − B4
B3′

. (17)

If a certain mode is at the maximum allowable power while
other modes are filtered out, then it is considered as a
dominant mode in the frequency spectrum of the laser and
the other modes can be neglected. Thus, the laser experiences
a single mode type of behavior. In addition to the boosting,
achieved by tuning the controller gain, there are tunable delay
elements that affect the filtering features of the controller.
As discussed in previous sections closely packed longitudinal
modes originate from the time delay associated with the
HNLF 1 (T1), and the solution applied to eliminate this delay
is based on adding another time delay (T2) in the form of inner
feedback loop. In an ideal theoretical case, there is no model
error T2′ = T3′, and T4′ = 0. In this case, as guaranteed by
the Smith predictor method, the delay elements are eliminated
from the characteristic equation and the longitudinal modes are
completely filtered out. However in practice, it is impossible
to achieve T2′ = T3′, and T4′ = 0. Therefore, the longitudinal
modes are not eliminated utterly, but are filtered significantly
due to the presence of cos(ω(T3 ′ − T2′)), and cos(ωT4′)
terms in (13). In our experiment, the first term generates a
filter with FSR in the order of GHz and the second term
has FSR of tens of MHz. After this point, the filters related
to these terms are referred to as the GHz and MHz filters,
respectively. Combination of these filters and the boosting
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TABLE I

DEFINITIONS AND TYPICAL VALUES OF THE PARAMETERS USED FOR NUMERICAL ANALYSIS OF THEORETICAL RESULTS

effect of the controller gain results in amplification of certain
modes while attenuating other modes, thus creating dominant
modes. In Section VII, these results are numerically analyzed
with the parameters extracted from an experimental setup.

VII. NUMERICAL ANALYSIS

To numerically analyze the transfer function of the FOPO
after the application of the Smith predictor, the transfer
function of (9) with appropriate parameters extracted from
the experimental setup is used. To include the nonlinearity
of parametric amplification, the method introduced in [16]
is applied. In this method, the denominator of (9) is set to
zero. Then, the linear and nonlinear parts of the denominator
are separated and their intersection is used to determine the
nonlinear gain and output power at each frequency. Table I
shows the definitions and typical values of the parameters used
for numerical analysis. The nonlinear medium (HNLF1) is
a HNLF with the propagation length of 1002.5 m and the
nonlinearity coefficient of γ = 13 W−1km−1. The length of
each of the connecting fibers is 2.5 m, and the dispersion
coefficients are β2 = −10−28 s2m−1 and β4 = 1.45 ×
10−55 s4m−1. The pump and signal are at the wavelengths
λp = 1557 nm and λs = 1568 nm, respectively. The
dispersion coefficients, and the pump and signal wavelengths
are applied to determine the phase-mismatch parameter, which
is used to obtain the nonlinear gain and phase shift [16].
It is assumed that all the optical couplers are 50/50, thus the
numerical value of all the coupling ratios for electric field
are 0.7. The length of HNLF2 is 1000.11 m, thus the length
difference between loop 1 and loop 2 is 11 cm. The power
loss coefficient is assumed to be 1.5 dB/km for the HNLFs
and 0.2 dB/km for the connecting fibers. Therefore, the loss
coefficients would be R f 1 ∼= R f 2 = 0.955 for the HNLFs,
and Ri ∼= 1 for the connecting fibers.
Based on the values chosen in this analysis the cosine

terms in (13) are divided to three major groups. First
group consists of cos(ωT2′), cos(ωT3′), cos(ω(T4′ − T2′)), and
cos(ω(T4′ − T3′)) with the frequency period of 200 kHz. The
cos(ωT4′) with frequency period of 20 MHz is in the second
group and the third group is the cos(ω(T3′ − T2′)) term with
frequency period of 1.8 GHz. The last two cosine terms filter
out the longitudinal modes generated by the first group. The
last two terms, form the GHz and MHz filters introduced in
Section VI.
Fig. 16(a) and (d) shows the transfer function as

the controller gain is increased, or equivalently Gc →

(1− Rcav − B4/B3′). As the controller gain is increased, the
difference between maximum and minimum of the transfer
function is increased, and unwanted modes are eliminated.
When Gc = 1 this difference is 15 dB, but when Gc is
increased to 2.14, the difference is more than 27 dB. This
clearly illustrates how certain modes can be boosted by tuning
the controller gain. The filtering effect of the cos(ω(T3′ − T2′))
term (GHz filter) is clearly observed in Fig. 16(d). FSR of
this filter is 1.8 GHz that results from the 11 cm path length
difference between loop 1 and loop 2. Thus, by controlling
the path length difference or equivalently the propagation
delay difference, FSR can be tuned. In addition to this filter,
there is another filter with FSR of 20 MHz (MHz filter). To
obtain better understanding of the effect of 20 MHz filter on
suppression of the longitudinal modes, only one period of the
GHz filter is depicted. Fig. 16(b) and (e) shows one period
of the transfer function for different values of the controller
gain. When Gc = 1 the difference between amplitude of the
successive 20 MHz modes is 0.2 dB, but when Gc = 2.14,
this difference is 1 dB. In addition, the number of modes is
reduced from 50 to 30, in the span of 1 GHz. As predicted by
the transfer function of (13), a closer look at the 20 MHz mode
reveals that 200 kHz modes are not completely eliminated.
Fig. 16(c) and (f) shows filtered longitudinal modes in the
vicinity of the dominant mode of the MHz filter for different
values of the controller gain. While the controller gain is
increased from 1 to 2.14, most of the 200 kHz modes are
eliminated and the difference between the amplitude of the
successive 200 kHz modes is increased from 0.2 to 1.2 dB. In
conclusion, by setting the controller gain to 2.14, the number
of the dominant modes reduces and the difference between the
amplitude of the successive modes is increased.

VIII. EXPERIMENTAL RESULTS

A series of experiments were conducted using the setup
shown in Fig. 14. FSRs of the GHz and MHz filter are
set to 1.8 GHz and 20 MHz, respectively. As numerical
analysis implied, increasing the gain of the controller leads
in enhancement of the maximum to minimum ratio and the
difference between the amplitude of the successive modes.
To confirm this experimentally, an EDFA is applied to provide
gain inside loop 2. Fig. 17(a) shows the RF spectrum of
the output of FOPO before and after the application of the
Smith predictor. It is demonstrated that the modes are drasti-
cally suppressed by the filtering effect of the Smith predictor.
Peaks are generated at every 1.8 GHz due to the difference
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Fig. 16. Comparison of the transfer function for different values of the controller gain. As Rcav + B3 + B4 approaches 1, the central mode is amplified
while the other modes are eliminated. (a) Rcav + B3 + B4 = 0.75 and Gc = 1. (b) Rcav + B3 + B4 = 0.75 and Gc = 1. (c) Rcav + B3 + B4 = 0.75 and
Gc = 1. (d) Rcav + B3 + B4 = 0.9995 and Gc = 2.14. (e) Rcav + B3 + B4 = 0.9995 and Gc = 2.14. (f) Rcav + B3 + B4 = 0.9995 and Gc = 2.14.

Fig. 17. Experimental measurement of RF spectrum of the Smith predictor enhanced FOPO with and without controller gain. (a) RF spectrum of FOPO
with and without the Smith predictor. Controller gain is not applied. (b) RF spectrum of the Smith predictor enhanced FOPO. Controller gain is not applied.
(c) RF spectrum of the Smith predictor enhanced FOPO. Controller gain is not applied. (d) RF spectrum of the Smith predictor enhanced FOPO. Controller
gain is applied. (e) RF spectrum of the Smith predictor enhanced FOPO. Controller gain is applied. (f) RF spectrum of the Smith predictor enhanced FOPO.
Controller gain is applied.

between the lengths of HNLF 1 and HNLF 2 while the
maximum mode suppression, in the span of 1.8 GHz, is
between 15 and 20 dB. The suppression level can be elevated
by increasing the controller gain. Fig. 17(a) and (d) show two
periods of the output spectrum for different values of gain.
As gain is increased, the central modes are boosted and the
difference between maximum and minimum of the transfer
function is increased from 17 to 33 dB. Fig. 17(b) and (e)
show the main peak of the transfer function as the EDFA

gain is increased. As predicted by the numerical analysis,
the 20 MHz modes exist but they are filtered by the GHz
filter. The peak of the transfer function is increased from
−84 to −73 dBm, which shows 11 dB enhancement of
the central mode. In addition, the difference between the
amplitude of the successive 20 MHz modes is increased from
1.2 to 2 dB. In agreement with predictions of the numerical
analysis, a closer look at the main 20 MHz mode makes it
clear that 200 kHz modes still exist. Fig. 17(c) and (f) show
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the main 20 MHz mode as the EDFA gain is increasing.
The peak of the transfer function is increased from −85 to
−77 dBm which shows 8 dB enhancement of the central
mode. Moreover, the difference between the amplitude of the
successive 200 kHz modes is increased from 1.1 to 2 dB.

IX. CONCLUSION

In this brief, a closed-loop control method based on modi-
fied Smith predictor is proposed to suppress the longitudinal
modes of a FOPO. To achieve this, a quasi-linear model for
the operation of the FOPO is introduced and based on this
model the transfer function of the FOPO cavity is derived.
Then, applying simple components such as optical couplers
and delay elements the control algorithm is developed to
reduce the number of the longitudinal modes. To verify the
validity of the results, the closed-loop system is experimentally
implemented, where the experimental results show significant
improvement in terms of mode suppression and tunability, thus
confirming the effect of the Smith predictor controller on the
system. It is observed that the number of longitudinal modes
can be reduced by two to three orders of magnitude. The
proposed structure is applicable to arbitrary wavelengths, thus
is considered as a prominent candidate to suppress longitudinal
modes at unconventional wavelengths (e.g., 2–5 μm).

REFERENCES

[1] J. Hansryd, P. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist,
“Fiber-based optical parametric amplifiers and their applications,”
IEEE J. Sel. Topics Quantum Electron., vol. 8, no. 3, pp. 506–520,
May/Jun. 2002.

[2] M. E. Marhic, Fiber Optical Parametric Amplifiers, Oscillators and
Related Devices, 1st ed. Cambridge, U.K.: Cambridge Univ. Press, 2007.

[3] M. E. Marhic, K. K.-Y. Wong, L. G. Kazovsky, and T.-E. Tsai,
“Continuous-wave fiber optical parametric oscillator,” Opt. Lett., vol. 27,
no. 16, pp. 1439–1441, Aug. 2002.

[4] Y. Q. Xu, S. G. Murdoch, R. Leonhardt, and J. D. Harvey, “Widely
tunable photonic crystal fiber fabry-perot optical parametric oscillator,”
Opt. Lett., vol. 33, no. 12, pp. 1351–1353, Jun. 2008.

[5] O. Svelto and D. Hanna, Principles of Lasers. New York, NY, USA:
Plenum Press, 1998.

[6] S. Yang, X. Xu, Y. Zhou, K. Cheung, and K. Wong, “Continuous-
wave single-longitudinal-mode fiber-optical parametric oscillator with
reduced pump threshold,” IEEE Photon. Technol. Lett., vol. 21, no. 24,
pp. 1870–1872, Dec. 15, 2009.

[7] Y. Zhou, K. K. Y. Cheung, S. Yang, P. C. Chui, and K. K. Y.
Wong, “Widely tunable picosecond optical parametric oscillator using
highly nonlinear fiber,” Opt. Lett., vol. 34, no. 7, pp. 989–991,
Apr. 2009.

[8] J. Liu, J. Yao, J. Yao, and T. H. Yeap, “Single-longitudinal-mode
multiwavelength fiber ring laser,” IEEE Photon. Technol. Lett., vol. 16,
no. 4, pp. 1020–1022, Apr. 2004.

[9] X. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, et al.,
“Single-longitudinal-mode erbium-doped fiber ring laser based on high
finesse fiber Bragg grating Fabry-Pérot etalon,” IEEE Photon. Technol.
Lett., vol. 20, no. 12, pp. 976–978, Jun. 15, 2008.

[10] C.-H. Yeh, T. T. Huang, H.-C. Chien, C.-H. Ko, and S. Chi, “Tunable
S-band erbium-doped triple-ring laser with single-longitudinal-mode
operation,” Opt. Exp., vol. 15, no. 2, pp. 382–386, Jan. 2007.

[11] O. J. M. Smith, “A controller to overcome dead time,” ISA J., vol. 6,
no. 2, pp. 28–33, 1959.

[12] G. Agrawal, Nonlinear Fiber Optics. San Diego, CA, USA: Academic
Press, 2007.

[13] J. M. Senior, Optical Fiber Communications, 3/E. Upper Saddle River,
NJ, USA: Pearson Education, 2009.

[14] A. Gelb and W. Vander Velde, Multiple-Input Describing Functions and
Nonlinear System Design, New York, NY, USA: McGraw-Hill, 1968.

[15] D. Rabus, Integrated Ring Resonators: The Compendium. New York,
NY, USA: Springer-Verlag, 2007.

[16] A. Salehiomran and M. Rochette, “A nonlinear model for the operation
of fiber optical parametric oscillators in the steady state,” IEEE Photon.
Technol. Lett., vol. 25, no. 10, pp. 981–984, May 15, 2013.

[17] D. Seborg, T. Edgar, and D. Mellichamp, Process Dynamics and Control.
New York, NY, USA: Wiley, 2003.


