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Converting one photon into two via four-wave mixing in optical fibers
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Observing nonlinear optical quantum effects or implementing quantum information protocols using nonlinear
optics requires moving to ever-smaller input light intensities. However, low light intensities generally mean
weak optical nonlinearities, which are inadequate for many applications. Here we calculate the performance of
four-wave mixing in various optical fibers for the case where one of the input beams is a single photon. We show
that in tapered chalcogenide glass fibers (microwires) a single photon plus strong pump beam can produce a
pair of photons with a probability of 0.1%, much higher than in previous work on bulk and wave-guided crystal
sources. Such a photon converter could be useful for creating large entangled photon states, for performing a
loophole-free test of Bell’s inequalities, and for quantum communication.
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I. INTRODUCTION

Pairs of photons created via spontaneous parametric down-
conversion (SPDC) [1] or spontaneous four-wave mixing
(FWM) [2] in a nonlinear optical material with a high-intensity
pump laser have been used in many experiments in quantum
optics, quantum metrology, and optical quantum information
processing. Interest is increasingly converging on using SPDC
or FWM in later stages of quantum information protocols,
rather than just initial sources of photons [3–5]. This requires
operation with very low intensity input states, including
converting a single photon into a pair.

Should an efficient one-to-two-photon conversion be real-
ized, one important application is the entangling of three or
more photons [6,7]. These large entangled photon states are
useful in quantum communication protocols [8,9] and allow
fundamental tests of quantum mechanics [7,10,11]. Increased
efficiency in converting single photons to pairs would allow
larger states to be generated, with greater speed. Single-photon
conversion could also be used for heralding photons after long-
distance transmission to close the Bell test detection loophole
[12] and for device-independent quantum key distribution [13];
any improvement in conversion efficiency directly increases
the communication rates. Finally, if efficient enough, single-
photon conversion could also be used directly in quantum
computing as a two-qubit gate [14].

The key challenge in converting a single photon into a pair
is the low efficiency of nonlinear optical processes at ultralow
power. In principle, standard SPDC or FWM sources could
be used, but the low efficiency (less than 10−5) limits the
single-photon conversion to rates too low to be useful [15].
Therefore we consider here specialty fiber media, which we
show can result in large conversion efficiencies thanks to long
length, small core size, and high nonlinearity.

We present complete calculations and simulations of FWM
between a strong pump and a single photon as illustrated
schematically in Fig. 1. First we set up the theoretical
framework by extending the quantum theory of nondegenerate
FWM [16,17] to the single-photon pump case. Then we apply
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the expressions to birefringent silica fibers, microstructured
silica fibers, and chalcogenide microwires to find the spectra
and conversion efficiency of the generated two-photon states.

II. QUANTUM THEORY OF FWM PUMPED BY A SINGLE
PHOTON AND STRONG LASER

A. Equations of motion for a χ (3) nonlinear medium

We determine the operator evolution of a system consisting
of a strong pump beam and a single photon entering a nonlin-
ear, dispersive, single-mode fiber and undergoing four-wave
mixing and phase modulation as in Fig. 1. We proceed in the
Heisenberg representation by solving the equation of motion
for the field amplitude operators [18]. The two pumping fields
are considered to be monochromatic or quasimonochromatic,
and we include self- and cross-phase modulation but not
parasitic effects such as Raman scattering and multiphoton
absorption due to the low power of the inputs. We stay in
the low-gain regime, which means that only spontaneous
FWM (also called four-photon scattering) is studied. This
approximation stands if the total probability of generating a
photon pair during the interaction is much lower than 1 and
certainly holds since one of our pumps is a single photon.

The field is quantized in one dimension in a length large
enough for the electric field to be written in the continuous
limit [19]. We then choose, for convenience, to write this field
in the frequency space as a sum of its space-dependent spatial
mode operators, an approach introduced in Ref. [18]. The
quantization time T , equal to the quantization length divided
by the speed of light, is then the time periodicity of the field,
and the density of the frequency space is δω = 2π/T . T has
to be long enough to allow the writing of the frequency modes
in the continuous limit. The electric field is then

�̂E(r,t) =
∑

j=x,y

(
F (x,y)

√
�

2ε0c

1√
2π

×
∫

dω

√
ω

nj (ω)
âj (ω,z)e−iωt + H.c.

)
�ej , (1)

where the frequency integral runs from 0 to +∞ and
H.c. stands for the Hermitian conjugate. F (x,y), with
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FIG. 1. (Color online) Four-wave mixing (FWM) with single-
photon and strong-pump inputs. The toy Hamiltonian with interaction
parameter χ illustrates the processes, but the full development is given
in the text.

∫∫ |F (x,y)|2 dxdy = 1, is the transverse distribution of the
fiber mode. The unit vectors �ej describe the field’s polarization,
and nj (ω) is the effective index of refraction for the fiber mode
of frequency ω and polarization j . Since we are in the contin-
uous limit, we approximated the discrete longitudinal modes
of a laser cavity by continuous-mode annihilation operators
âj (ω,z) with units of inverse square-root frequency [19]. They
follow the commutation relations [âj (ω,z),â†

j ′(ω′,z)] = δ(ω −
ω′)δjj ′ , with Dirac delta δ(ω − ω′) and Kroenecker delta δjj ′ .

These operators âj (ω,z) and the quantum state of the
system |ψ〉 provide complete knowledge about the state as
a function of propagation distance z, which allows us to
extract the efficiency of single-photon-to-pair conversion. In
the Heisenberg representation, |ψ〉 is constant, and we only
need to solve for the evolution of the annihilation operators.

If we consider only one polarization component, the
propagating field can be simplified into

Ê(z,t) =
√

�

4πε0cAeff

∫
dω

√
ω

n(ω)
â(ω,z)e−iωt + H.c.

= Ê(+)(z,t) + Ê(−)(z,t), (2)

where the transverse modal distribution was also simplified
using the effective area of the fiber mode Aeff = 1∫∫ |F (x,y)|4dxdy

,
which is taken to be the same for all the frequency components
in the fiber.

The evolution equation of the annihilation operators can be
given by

∂â(ω,z)

∂z
= i

�
[â(ω,z),Ĝ(z)], (3)

where the momentum operator Ĝ is given by integration over
the cross-sectional area of the momentum that flows during
the quantization time.

Ĝ(z) =
∫

Aeff

dS

∫ T

0
dtD̂(−)(z,t)Ê(+)(z,t) + H.c., (4)

where D̂(z,t) = ε0Ê(z,t) + P̂ (z,t) is the electric displacement
operator. The polarization operator is defined by

P̂ (z,t) =
∑
n�1

ε0χ
(n)Ên(z,t) = P̂l(z,t) + P̂nl(z,t), (5)

which is the sum of the linear polarization P̂l(z,t) given
by ε0χ

(1)(ω)Ê(r,t) and the nonlinear polarization P̂nl(z,t)
of higher orders. We can thus separate Ĝ(z) into linear
and nonlinear parts as Ĝ(z) = Ĝl(z) + Ĝnl(z), driven by
corresponding linear and nonlinear polarizations.

The linear evolution of the momentum operator is obtained
from Eqs. (2), (4), and (5) as (see Appendix A)

Ĝl(z) =
∫

dω�β(ω)â†(ω,z)â(ω,z), (6)

with the propagation constant β(ω) = n(ω)ω
c

. The linear evo-
lution of any annihilation operator can thus be deduced from
Eqs. (3) and (6) as

âl(ω,z) = â0(ω,z)eiβ(ω)z. (7)

The nonlinear evolution [contained in â0(ω,z)] can be found
similarly from the nonlinear evolution of the momentum. Ĝnl

can be decomposed into two parts as Ĝnl(z) = ĜFWM
nl (z) +

Ĝ
ph mod
nl (z) (see Appendix A), one giving FWM and the other

phase modulation.
The two pumping fields, of frequencies ωp1,2, are con-

sidered to be monochromatic or quasimonochromatic and
perfectly overlapping in time and have the same spectral
bandwidth δωp with δωp/ωp1,2 � 1. It is convenient to
choose the quantization time as the Fourier transform of the
pulses’ spectral width, T = 2π/δωp. The frequency-space
density is therefore δω = δωp. For monochromatic pumps,
this quantization time, as well as the pulse duration, is infinite.

The FWM part of the momentum operator is (see
Appendix A)

ĜFWM
nl (z) = 3χ (3) �

2

ε0c2AeffT

2π

T

×
[ ∫

dω

√
ωωp1ωp2(ωp1 + ωp2 − ω)

n(ω)n(ωp1)n(ωp2)n(ωp1+ωp2−ω)

× â
†
0(ω,z)â†

0(ωp1 + ωp2 − ω,z)

× â0(ωp1,z)â0(ωp2,z)e−i
kz + H.c.

]
, (8)

with 
k = β(ω) + β(ωp1 − ωp2 − ω) − β(ωp1) − β(ωp2),
where the integral over ω covers the whole positive spectrum
except the two injected frequencies. The two creation
operators â

†
0(ω,z)â†

0(ωp1 + ωp2 − ω,z) indicate that output
photons can only be created in pairs, with correlated
frequencies ω and ωp1 + ωp2 − ω.

The phase modulation part is (see Appendix A)

Ĝ
ph mod
nl (z) = 3χ (3) �

2

ε0c2AeffT

[ ∫∫
dωdω′ ω

n(ω)

ω′

n(ω′)
â
†
0(ω,z)â0(ω′,z)â†

0(ω′,z)â0(ω,z)

− 1

2

∫
dω

2π

T

(
ω

n(ω)
â
†
0(ω,z)â0(ω,z)

)2]
, (9)

with the integrals covering the whole positive spectrum.
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We can now derive the evolution of the mode operators from Eq. (3) for any frequency generated in the fiber.

∂â0(ω,z)

∂z
= 3iχ (3) �

ε0c2AeffT

[
2π

T

√
ωωp1ωp2(ωp1 + ωp2 − ω)

n(ω)n(ωp1)n(ωp2)n(ωp1 + ωp2 − ω)
â
†
0(ωp1 + ωp2 − ω,z)â0(ωp1,z)â0(ωp2,z)e−i
kz

+ ω

n(ω)

∫
dω′ ω′

n(ω′)

[
â
†
0(ω′,z)â0(ω′,z) + 1

2

T

2π

]
â0(ω,z) − 1

2

2π

T

ω2

n(ω)2
â
†
0(ω,z)â0(ω,z)â0(ω,z)

]
. (10)

The first of the two summed terms reflects the evolution by FWM, and the second reflects the self-phase modulation. If we
neglect the phase modulation arising from the generated frequencies because they will be much weaker than the pumps, we have,
for the generated frequencies,

∂â0(ω,z)

∂z
= 3iχ (3) �

ε0c2AeffT

2π

T

⎡
⎣

√
ωωp1ωp2(ωp1 + ωp2 − ω)

n(ω)n(ωp1)n(ωp2)n(ωp1 + ωp2 − ω)
â
†
0(ωp1 + ωp2 − ω,z)â0(ωp1,z)â0(ωp2,z)e−i
kz

+ ω

n(ω)

[
ωp1

n(ωp1)
â
†
0(ωp1,z)â0(ωp1,z) + ωp2

n(ωp2)
â
†
0(ωp2,z)â0(ωp2,z) + 1

2

ω

n(ω)

T

2π

]
â0(ω,z)

⎤
⎦. (11)

For the incoming pump frequencies the evolution is given by

∂â0(ωj ,z)

∂z
= 3iχ (3) �

ε0c2AeffT

⎡
⎣ ∫

dω

√
ωωjωk(ωj + ωk − ω)

n(ω)n(ωj )n(ωk)n(ωj + ωk − ω)
â0(ω,z)â0(ωp1 + ωp2 − ω,z)â†

0(ωk,z)ei
kz

+ 2π

T

ωj

n(ωj )

[
1

2

ωj

n(ωj )
â
†
0(ωj ,z)â0(ωj ,z) + ωk

n(ωk)
â
†
0(ωk,z)â0(ωk,z) + 1

2

ω

n(ω)

T

2π

]
â0(ωj ,z)

⎤
⎦, (12)

with j,k = p1,p2,
Although we are in the quasimonochromatic approximation, the pumps’ creation and annihilation operators are not

dimensionless for homogeneity with those of the generated modes.

B. Solution for a single photon and a strong pump

To solve Eqs. (11) and (12), the strong pump is taken to be classical [â0(ωp1,z) ≡ Ap1(z)] and undepleted [|Ap1(z)|2 =
|Ap1(0)|2]. The weak pump, p2, has to be kept quantum throughout since it is on the few- or single-photon level. Therefore we
can also assume the number of weak-pump photons is negligible compared to the number of strong-pump photons, and so we
neglect phase modulation from the weak pump.

We use the standard waveguide nonlinear parameter γ (ω) = 3χ (3)ω

2ε0c2n(ω)2Aeff
. If all the frequencies are close, we can use the same

averaged γ for all the frequency modes, which is commonly used to simplify the notation but is not necessary for the solution
[20].

With these approximations the evolution of the strong pump can be simplified from Eq. (12) to

dAp1(z)

dz
= iγ P1Ap1(z), (13)

where we defined the pump peak power as P1(z) = �ωp1×N1(z)
T

= 2π�ωp1

T 2 |Ap1(z)|2. Here N1(z) = 2π
T

|Ap1(z)|2 is the number of
pump photons going through a plane at position z per time T . In the undepleted pump approximation, P1 is independent of z.

Equation (13) is solved as [21]

Ap1(z) = Ap1(0)eiγP1z. (14)

The evolution of the weak pump can then be simplified from Eq. (12) to

∂â0(ωp2,z)

∂z
= 2iγ �

T

∫
dω

√
ω(ωp1 + ωp2 − ω)A∗

p1(0)e−iγ P1zâ0(ω,z)â0(ωp1 + ωp2 − ω,z)ei
kz + 2iγ P1â0(ωp2,z), (15)

and if we choose A∗
p1(0) = Ap1(0) = T

√
P1

2π�ωp1
, then

∂â0(ωp2,z)

∂z
= 2iγ

[√
P1

√
�

2πωp1

∫
dω

√
ω(ωp1 + ωp2 − ω)â0(ω,z)â0(ωp1 + ωp2 − ω,z)ei(
k−γP1)z + P1â0(ωp2,z)

]
. (16)
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We can write this more explicitly by introducing ζ2 = 2π�ωp2

T 2 , where ζ2〈â†(ωp2,0)â(ωp2,0)〉 = P2 is the peak power of the weak
pump at the medium entrance, with P2 = ζ2

T
2π

in the case of a single-photon pumping. We then have

∂â0(ωp2,z)

∂z
= 2iγ

[√
P1

√
ζ2

2π

T

∫
dωâ0(ω,z)â0(ωp1 + ωp2 − ω,z)ei(
k−γP1)z + P1â0(ωp2,z)

]
. (17)

Finally, the evolution of the generated modes’ annihilation operators, simplified from Eq. (11), is

∂â0(ω,z)

∂z
= 2iγ [

√
ζ2

√
P1â

†
0(ωp1 + ωp2 − ω,z)â0(ωp2,z)e−i(
k−γP1)z + P1â0(ω,z)]. (18)

The evolution of both the weak pump and the generated photons can be derived in the low-gain approximation by using a
Baker-Hausdorff expansion to first order in the effective gain, γ

√
T ζ2

√
P1L � 1. The calculations for the annihilation operators

of the generated frequencies are detailed in Appendix B and give the main result

â0(ω,L)e−i2γP1L = â0(ω,0) + 2iγ
√

P1

√
ζ2Le− iKL

2 sinc

(
KL

2

)
â
†
0(ωp1 + ωp2 − ω,0)â0(ωp2,0),, (19)

where K = 
k + γP1 = β(ω) + β(ωp1 + ωp2 − ω) − β(ωp1) − β(ωp2) + γP1 is the total phase mismatch, the sum of the linear
and nonlinear parts.

Note that by considering only the first-order gain, we assume that the conversion efficiency is low enough to be well
represented by a single conversion process, described by â0(ωp1,L)â0(ωp2,L)â†

0(ω,L)â†
0(ωp1 + ωp2 − ω,L). We neglect the

reverse process of converting the pairs back to pump photons, which is equivalent to neglecting double-pair emissions in SPDC
or standard FWM. This approximation causes deviation of less than 2 × 10−6 for conversion efficiency η = 0.1% and less than
0.02 for a single-photon conversion efficiency up to η = 10%, as discussed in Appendix C. A treatment without the low-gain
approximation would allow simulation of Rabi oscillations between the single photon and photon pair, as required for the coherent
photon conversion of Ref. [14].

III. SINGLE-PHOTON CONVERSION EFFICIENCY

The conversion efficiency of a single photon into a pair
can now be derived from Eq. (19). The spectral density of the
photons created during the characteristic time T is given by

nd(ω,L) = 〈ψ |â†
0(ω,L)â0(ω,L)|ψ〉. (20)

The quantum state |ψ〉 is the input state of the weak pump
and generated photon pairs. For a single photon on pump 2,
|ψ〉 = |1〉p2 |0〉s |0〉i , where we label the lower-frequency half
of the output pair spectrum idler and the higher-frequency
half signal. The total number of photons generated during T

is then given by the integral of the spectral density over the
output spectrum.

Putting Eq. (19) into Eq. (20) gives the photon number
spectral density per characteristic time

nd(ω,L) = T

2π
4γ 2P1P2L

2sinc2

(
KL

2

)

= 4γ 2P1
�ωp2

2π
L2sinc2

(
KL

2

)
, (21)

where the generation of a photon at frequency ω implies the
generation of its pair photon at frequency ωp1 + ωp2 − ω. Let
us now find the total number of photon pairs generated out
of a single photon in cases of pulsed and continuous-wave
pumping.

A. Regime with both pumps pulsed

If both pumps are pulsed simultaneously with a spectral
width δωp and T = 2π

δωp
, the total number of photon pairs

generated per time T (or per pulse for transform-limited

pulses) is

Npairs/pulse = 1

2

∫
dωnd(ω,L) = 4γ 2P1P2L

2 
ωs

δωp

= 4γ 2P1
�ωp2

2π
L2
ωs, (22)

with


ωs = 1

2

∫
dωsinc2

(
K(ωp1,ωp2,ω)L

2

)
(23)

and P2 = �ωp2

T
, where the factor 1/2 in the first line is due to the

spectrum covering both signal and idler frequencies, leading to
double counting. The integral is over the whole spectral range
except the two pump frequencies ωp1,p2.

The number of generated photons pairs per second is thus

Npairs/sec = frep4γ 2P1P2L
2 
ωs

δωp

= 4γ 2P1avgP2L
2 
ωs

2π
, (24)

with P1 = P1avg

frep

δωp

2π
, where frep is the repetition rate of the

source.

B. Regime with one pump pulsed and the other
with a continuous wave

If one of the pumps is pulsed and the other is continuous
wave (cw), the output photons will behave as if both pumps
were pulsed at the repetition rate of the pulsed one, which
removes the necessity for time alignment. Taking the single-
photon pump as pulsed and the strong pump as cw, we have
P1 = P1avg and P2 = �ωp2

T
, which gives

Npairs/sec = frep4γ 2P1avgP2L
2 
ωs

δωp

. (25)
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The pair generation is independent of the single-photon pulse
duration and depends only on its repetition rate and the strong
laser’s cw pump power. It is less efficient by a factor of frep

δωp

compared to when both pumps are pulsed.
If we want the weak pump to be cw, we can argue an

“equivalent-single-photon” pumping such that each pulse of
the strong pump sees, on average, one photon of the weak
pump. Then we have to take P2 = P2avg = �ωp2

T
, and

Npairs/sec = 4γ 2P1avgP2avgL
2 
ωs

2π
. (26)

This generation is equivalent to the pulsed-pulsed pumping,
which is not surprising since the equivalent-single-photon
pumping is cw pumping with the same peak power as the
pulsed pumping. This means many more photons of pump p2
enter the fiber, but only the ones which overlap a strong pump
pulse can convert into pairs.

C. Regime with two continuous-wave pumps

With an input made out of a weak continuous pump 2 and
a strong continuous pump 1, the number of photons generated
per second is straightforward,

Npairs/sec = 4γ 2P1avgP2avgL
2 
ωs

2π
; (27)

however, it is not obvious to define what qualifies as a single
photon for a cw pump. This regime can reach the same
efficiency as the pulsed-pulsed case if either of the pumps’ cw
average power is raised to the peak power of the pulsed-pulsed
case. This would be difficult in practice, as peak powers can
be four orders of magnitude larger than average powers for the
example of mode-locked picosecond lasers.

IV. CANDIDATE FIBERS FOR MAXIMIZING
CONVERSION EFFICIENCY

In this section we compare three fiber types with unique
methods of phase matching to find the best for single-photon
conversion. The single-photon conversion efficiency can be
defined, for a weak pumping field composed of Np2 photons per

time unit, as η = Npairs

Np2
, with Npairs being the number of photon

pairs generated during the same time unit. If the weak pumping
field is a single photon, the pulsed-pulsed configuration gives
the highest conversion efficiency for a given input average
power of pump 1 [compare Eq. (24) with Eqs. (25) and (27)].
Let us consider strategies for maximizing the single-photon
conversion in this regime. When Np2 = 1, the conversion
efficiency as given by Eq. (22) is

η = Npairs

Np2
= 4γ 2P1

�ωp2

2π
L2
ωs. (28)

The parameters that can be tuned to maximize conversion
efficiency are nonlinearity χ (3) and mode area Aeff through
γ , length L, phase-matching bandwidth 
ωs , and peak power
P1 of the strong pump. Since γ is squared, decreasing Aeff

and increasing χ (3) will have the greatest effect. By contrast,
the conversion efficiency appears to be quadratic in the length
of the fiber L, but the signal and idler bandwidths given by
Eq. (23) will vary approximately with 1/L, giving an overall

linear dependence on fiber length. The spectral width 
ωs can
also vary independent of L from being tiny (δω) to hundreds of
nanometers, depending on the pump configuration and, most
importantly, on the type of phase-matching chosen.

We examine three candidates for maximizing conversion
efficiency, corresponding to the three main methods of phase
matching in optical fibers: birefringence, operation near a
zero-dispersion wavelength (ZDW), and nonlinear phase
matching using self-phase modulation. The phase-matched
frequencies generated by the use of birefringence are spectrally
narrow and highly tunable. The frequencies phase matched
around the ZDW or due to nonlinear phase modulation can
have a broader spectrum and are centered around or near the
ZDW. We compare the potential for single-photon conversion
in three different fiber types corresponding to those three
types of phase matching and find the optimal parameters to
maximize pair generation.

The phase mismatch can be expressed as a Taylor expansion
around the central frequency ω0 as

K(�) = β2(ω0)(�2 − 
ω2)

+ β4(ω0)

12
(�4 − 
ω4) + γP1, (29)

with the central frequency ω0 = ωp2+ωp1

2 , the offset frequency
� = ω − ω0, the pump offset 
ω = ωp2−ωp1

2 , and dispersion
coefficients given by

βi(ω0) =
(

∂iβ(ω)

∂ωi

)
ω0

. (30)

Two schemes can be considered when the pump wave-
lengths are nondegenerate as required for single-photon FWM:
external pumping, with generation of new wavelengths in
between the pump wavelengths, or internal pumping, with
generation of new wavelengths to the exterior. We focus on
external pumping as illustrated in Fig. 2 because, assuming
the strong pump has the highest wavelength, it allows filtering
the main Raman noise from the strong pump as this noise will
be at still higher wavelengths. However, the large separation in
pump wavelengths can lead to temporal walk-off between the
pump pulses in the fiber, reducing efficiency. This effect is mit-
igated by situating the pumps symmetrically about the ZDW.

Single photon 
pump

Signal and idler range Strong pump 
laser

FIG. 2. (Color online) Arrangement of pump and signal-idler
wavelengths (amplitudes and widths not to scale). The main source
of noise, spontaneous Raman scattering from the strong pump, will
occur to the far right of the figure, allowing its removal by spectral
filtering.
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A. Polarization-maintaining fiber: Birefringent phase matching

A standard polarization-maintaining (PM) fiber exhibits a
birefringence large enough to achieve phase matching some
dozens to hundreds of terahertz from the pumps (∼100 nm)
[22]. These fibers are commercially available, with lengths
up to kilometers, and are spatially uniform. The phase
matching is easy to obtain and widely tunable by tuning the
pump wavelengths. Further, the birefringent phase matching
means that the photon pairs can come out from the pumps
with opposite polarizations, enabling polarization filtering
of the pumps and associated Raman noise. However, the
relatively large core size leads to a modest waveguide nonlinear
parameter of γ = 4.6 × 10−3 W−1 m−1 in our example below.

We consider the two pumps copolarized along the fast axis
and the generated signal and idler polarized along the slow
axis, which gives total phase mismatch

K(�) = β2(ω0)(�2 − 
ω2) + β4(ω0)

12
(�4 − 
ω4)

+ γP1 + 2ω0
δn

c
, (31)

where the birefringence δn = nslow − nfast is written separately
from the dispersion coefficients. Far from the ZDW (β2 �
β4,γ P1), the phase-matched frequencies are

�2 = − 2ω0

β2(ω0)

δn

c
+ 
ω2. (32)

We consider a silica PM fiber with birefringence δn = 3 ×
10−4 (e.g., Panda PM630), and we take both pumps as being
pulsed with an 80-MHz repetition rate and 5-ps pulses. We
take a 5-W average power for the strong pump and a single
photon for the weak pump. With the walk-off length between
the two pump pulses in this configuration being 18 cm, we
consider an 11-cm fiber, which gives an effective interaction
length of L = 10 cm.

With the strong pump at 890 nm and the weak pump at
660 nm, we obtain a signal and idler phase matched at 728
and 790 nm with spectral width 
ωs = 7 rad THz (2 nm), as
shown in Fig. 3. The conversion efficiency given by Eq. (28)
is η = 2 × 10−8, well below that achievable in χ (2) media. We
plot the signal and idler spectral density [photons per (rad Hz)
per pulse] in Fig. 3, accurate to the precision of our frequency-
space mapping, δωp = 1.3 rad THz (0.5 nm, given by the
width of the gray lines on the graph).

B. Microstructured fiber: Phase matching near
the zero-dispersion wavelength

Phase matching occurs in a fiber near the ZDW when the
material and waveguide contributions to dispersion cancel. We
will take the example of silica microstructured fibers, which are
commercially available and can be fabricated to exhibit a ZDW
in the visible and telecom ranges. The interest in such a fiber
is that the core can be much smaller than regular single-mode
fibers, thus increasing the waveguide nonlinear parameter, e.g.,
up to γ = 2.7 × 10−2 W−1 m−1 in our example, with lengths
up to a few meters [23]. The spectral broadness of the phase
matching depends on the length considered and is only tunable
in a small range once the ZDW is chosen.

FIG. 3. Converting a single photon to a pair via FWM is
possible in principle using a PM fiber, but the very narrow phase
matching limits the efficiency to η = 2 × 10−8 in this example. The
quasimonochromatic pump wavelengths are represented by gray lines
with a width of 1.3 rad THz with values labeled above the graph (well
above the y axis shown), while the generated signal and idler spectra
are the black lines in the center.

We model a microstructured fiber with a core diameter of
1.8 μm and air fraction of 0.72 in the cladding, which give the
ZDW at 716 nm. The wavelengths and the pump powers are
altered slightly from the previous example to achieve phase
matching. We take a 1-W average power for the strong pump
in a 2-m-long fiber, with 2-ps-long pump pulses and 2-ps-
long single-photon pulses at an 80-MHz repetition rate. As a
consequence of working near the ZDW, the walk-off length
is now over 100 m since the pumps have approximately the
same propagation constant β on either side of the ZDW. The
single-photon frequency is at a wavelength of 676.75 nm, and
the strong pump is now at 760 nm. Simulations give a much
broader spectrum for the signal and idler (around 160 rad THz;
Fig. 4), and consequently, the efficiency, still given by Eq. (28),

FIG. 4. A much broader signal and idler spectrum is obtained
near the ZDW using a microstructured fiber. Even after filtering
between 686 and 750 nm to remove noise photons near the pumps,
the efficiency η = 4 × 10−4 over the remaining signal-idler range is
four orders of magnitude larger than for the PM fiber. The gray lines
represent the pumps’ wavelengths, widths (now 3.1 rad THz), and
intensity as in Fig. 3.
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is now up to η = 4 × 10−4. Even including filtration of the
generated photons between 686 and 750 nm to allow pump
removal, this efficiency is four orders of magnitude better than
the PM fiber.

However, this method of phase matching is very sensitive to
core diameter and pump wavelengths. For example, a 0.5-nm
deviation of pump wavelength changes the output spectral
shape completely and, even if it is still phase matched, may give
no pairs at the center of the spectrum. Additionally, obtaining a
2-m microstructured fiber with good uniformity for the whole
length is not straightforward, as some variations in the core
diameter will occur that deteriorate the perfect phase matching.

C. Chalcogenide microwire fiber: Phase matching
due to self-phase modulation

Achieving the best conversion efficiency requires ultrahigh
nonlinearity and small cross-sectional area. These can be
achieved by tapering fibers made of chalcogenide glass as in
Refs. [24,25]. The chalcogenide As2Se3 has χ (3) three orders
of magnitude larger than that of silica glass, and core diameters
in the tapered microwire region can be as small as 500 nm,
thanks to its large refractive index, while still maintaining
good coupling to standard single-mode fibers and lengths
beyond 10 cm. These microwires exhibit ultrahigh waveguide
nonlinear parameters up to γ = 180 W−1 m−1.

This large γ directly leads to high conversion efficiency
but also allows nonlinear phase matching. As shown by
Eq. (29), it is possible to compensate for positive or negative
linear phase mismatch by the nonlinear contribution γP1 due
to the strong-pump self-phase modulation. The higher the
dispersive mismatch is, the higher the pump powers must be to
compensate, so moderate pump powers still require working
near the ZDW. In the external-pumping configuration of Fig. 2,
the dispersion β2 or β4 has to be positive to compensate
for self-phase modulation because the pump offset is greater
than the frequency offset, i.e., 
ω2 > �2. The pump power
necessary to reach perfect phase matching is

P1 = 1

γ

(
β2(ω0)
ω2 + β4(ω0)

12

ω4

)
. (33)

For convenient all-telecom operation and to avoid the two-
photon absorption at short wavelengths in the chalcogenide
glass As2Se3 [26], we take the example of the FWM scheme
pumped at 1480 nm by the single photon and at 1620 nm
by a strong pump. The two fields are pulsed at 80 MHz
with 2-ps-long pulses. The fiber considered is similar to the
samples described in Ref. [25]. A fiber diameter of 0.555 μm
for the microwire gives a dispersion coefficient of β2(ω0) =
0.05 ps2/m at 1550 nm, and β4 is negligible. Phase matching
is achieved for a 0.8-W peak power, which corresponds to an
average power of only 0.13 mW. Simulation of the spectral
density is given in Fig. 5 in a 10-cm-long microwire section,
where the walk-off length between the two pump pulses is now
so large that it is effectively infinite. Both the high intrinsic
χ (3) of the chalcogenide and the strong confinement allow us
to reach a conversion efficiency of η = 1.1 × 10−3. However,
as in the silica microstructured fibers, caution must be taken
in filtering the desired photons since high nonlinearity means
high Raman noise, large phase modulation broadening, and

FIG. 5. Due to high intrinsic χ (3) and strong confinement, the
chalcogenide microwire gives the highest conversion rate, with an
efficiency of η = 1.1 × 10−3. The gray lines represent the pumps’
wavelengths, widths (3.1 rad THz), and intensity, as in Fig. 3.

other undesired interactions such as degenerate FWM from
the strong pump.

D. Experiments

Tests in our laboratory have shown that the nonlinear
interaction in standard birefringent fibers is indeed very weak,
making them unsuitable for single-photon conversion. The
implementation in Ref. [14] in birefringent microstructured
fibers allowed an inferred conversion efficiency of 3 × 10−9,
with the weak pump kept at 4.8-μW effective average power,
well above the single-photon level. This was achieved for
strong-pump average powers under 100 mW and employed
narrow-band birefringent phase matching, limiting conversion
efficiency but demonstrating the principle of single-photon
conversion. Finally, we have performed preliminary experi-
ments on the chalcogenide microwires, verifying nondegen-
erate, external-pumping phase-matching conditions similar to
those shown above.

V. CONCLUSION

We have predicted a promising result in the conversion
of single photons into pairs via four-wave mixing. As shown
from our simulations based on the evolution of the quantum
field operators, conversion efficiencies up to 0.1% should be
achievable in chalcogenide microwires. The results in the three
types of fibers we modeled are summarized in Table I.

In this work, the low-gain approximation is sufficient for
applications to generate large entangled states and photon
heralding, although a nonperturbative approach keeping all
orders of gain would make for an interesting study and would
allow exploring the deterministic pair generation |1〉p2 →
|11〉si and oscillatory |1〉p2 → |11〉si → |1〉p2 → · · · regimes.
However, finding a material enabling photon conversion with
an efficiency high enough to justify this nonperturbative
approach remains a challenge.

Interestingly, neither the derivation nor the value of the
conversion efficiency we found depends on the single photon
being quantized: the result can equally be obtained by
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TABLE I. Summary of expected single-photon-to-pair conver-
sion efficiency and strong-pump power required for the three fiber
types considered: birefringent silica fibers, microstructured silica
fibers, and chalcogenide As2Se3 microwired fibers. Considering the
80-MHz repetition rate and inputting one photon per pulse, we also
calculate the number of pairs produced per second.

Fiber Average pump Conversion Photon pairs
type power (mW) efficiency η per second

Birefringent (silica) 5000 2 × 10−8 1.6
Microstructured (silica) 1000 4 × 10−4 32 000
Microwire (As2Se3) 0.13 1 × 10−3 80 000

assuming a classical pulse with the same input peak power as
the single photon. This implies there is no new quantumness
in this process beyond the well-established spontaneous
generation of pairs in standard spontaneous FWM or SPDC.

In implementations, attention must be paid to the various
possible sources of noise: degenerate FWM and spontaneous
Raman scattering [27] from the strong pump and even second
orders or combinations of these effects.
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APPENDIX A: DERIVATION OF MOMENTUM
GENERATORS

The two pumps are considered to be monochromatic or
quasimonochromatic and perfectly overlapping, with identical
pulse duration and spectral width δω. The quantization time
is chosen to be the transform-limited pulse duration, T =
2π/δω.

The quantum field operator can be written in the continuous
limit as

Ê(z,t) =
∫

dω
√

�(ω)â(ω,z)e−iωt + H.c., (A1)

where the integral runs from zero to infinity, with the
notation simplified by the introduction of the variable
�(ω) = �ω

4πε0cAeffn(ω) .

The momentum operator is given by Eq. (4), from which
we can derive its linear part Ĝl(z) and nonlinear part Ĝnl(z).

Ĝl(z) =
∫

Aeff

dS

∫ +T

0
dt

∫∫
dωdω′ε0[χ (1)(ω) + 1]

×
√

�(ω)â†(ω,z)eiωt
√

�(ω′)â(ω′,z)e−iω′t + H.c.

= 2Aeff

∫∫
dωdω′ε0n(ω)2�(ω)â†(ω,z)â(ω,z)

× 2πδ(ω − ω′)

= 4πAeffε0

∫
dωn(ω)2�(ω)â†(ω,z)â(ω,z)

=
∫

dω
�ω

c
n(ω)â†(ω,z)â(ω,z),

where we used
∫ T

0 dtei(ω−ω′)t = 2πδ(ω − ω′) (since the in-
tegration time matches the quantization time). The linear
evolution of any annihilation operator can thus be deduced
as in Eq. (7). The nonlinear momentum operator evolves
according to

Ĝnl(z) =
∫

Aeff

dS

∫ +T

0
dtP̂nl

(−)
(z,t)Ê(+)(z,t) + H.c. (A2)

If we consider only FWM as generating propagating
modes, the relevant nonlinear polarization is P̂nl(z,t) =
ε0χ

(3)
...Ê3(z,t). We can decompose Ĝnl(z) into two parts, one

for FWM and the other for phase modulation, as Ĝnl(z) =
ĜFWM

nl (z) + Ĝ
phMod
nl (z). Then

Ĝnl(z) = ε0χ
(3)

∫
Aeff

dS

∫ +T

0
dt

×
[ ∫

dω
√

�(ω)â†(ω,z)eiωt + H.c.

]

×
[ ∫

dω′√�(ω′)â†(ω′,z)eiω′t + H.c.

]

×
[ ∫

dω′′√�(ω′′)â†(ω′′,z)eiω′′t + H.c.

]

×
[ ∫

dω′′′√�(ω′′′)â†(ω′′′,z)eiω′′′t + H.c.

]
. (A3)

We keep only the frequencies that will propagate in the
fiber: the frequencies around the two pumps and frequencies
generated by FWM with these two pumps. We can separate
the operators into four frequency parts,

∫
dω

√
�(ω)â(ω,z)e−iωt =

∫

ωp1

dω1

√
�(ω1)â(ω1,z)e−iω1t +

∫

ωp2

dω2

√
�(ω2)â(ω2,z)e−iω2t

+
∫


ωs

dω
√

�(ω)â(ω,z)e−iωt +
∫


ωi

dω′√�(ω′)â(ω′,z)e−iω′t , (A4)

where 
ωs and 
ωi are a wide frequency range around the central frequencies of the photon pairs generated by FWM and

ωp1,p2 are a wide range frequency around the two pump wavelengths. Since we assumed our two pumps are monochromatic
or quasimonochromatic and took their bandwidth to be the frequency step 
ωp1 = 
ωp2 = δω = 2π/T , we can write∫

ωp1

dω1
√

�(ω1)â(ω1,z) = δω
√

�(ωp1)â(ωp1,z) = 2π
T

√
�(ωp1)â(ωp1,z), with ωp1 being the central frequency of pump 1,

and we can do the same for pump 2. For more clarity in the expressions with respect to the other operators, we keep the pump

043808-8



CONVERTING ONE PHOTON INTO TWO VIA FOUR-WAVE . . . PHYSICAL REVIEW A 90, 043808 (2014)

mode operators dimensioned as [â(ωp1,p2,z)] =
√

1
δω

, so the number of pump photons traveling through a plane of position z

during the time interval T is 2π
T

〈â†(ωp1,2,z)â(ωp1,2,z)〉. Then we can write∫
dω

√
�(ω)â(ω,z)e−iωt = 2π

T
[
√

�(ωp1)â(ωp1,z)e−iωp1t + √
�(ωp2)â(ωp2,z)e−iωp2t ]

+
∫


ωs

dω
√

�(ω)â(ω,z)e−iωt +
∫


ωi

dω′√�(ω′)â(ω′,z)e−iω′t . (A5)

The FWM part of the nonlinear momentum is then

ĜFWM
nl (z) = 24

(
2π

T

)2

ε0χ
(3)

∫
Aeff

dS

∫ +T

0
dt

∫

ωs

dω
√

�(ω)â†(ω,z)

×
∫


ωi

dω′√�(ω′)â†(ω′,z)
√

�(ωp1)â(ωp1,z)
√

�(ωp2)â(ωp2,z)ei
ωt + H.c.,

or, if we write the operators as a product of their linear and nonlinear parts,

ĜFWM
nl (z) = 24

(
2π

T

)2

ε0χ
(3)

∫
Aeff

dS

∫ +T

0
dt

∫

ωs

dω
√

�(ω)â†
0(ω,z)

×
∫


ωi

dω′√�(ω′)â†
0(ω′,z)

√
�(ωp1)â0(ωp1,z)

√
�(ωp2)â0(ωp2,z)ei
ωte−i
kz + H.c.

The factor of 24 comes from all the possible combinations of the mode operators. Here 
ω = ω + ω′ − ωp1 − ωp2 and 
k =
β(ω) + β(ω′) − β(ωp1) − β(ωp2). Using again

∫ T

0 dtei
ωt = 2πδ(
ω) and
∫

dω′δ(
ω) = 1 and evaluating the cross-sectional
area integral, we have

ĜFWM
nl (z) = 24 × 2π

(
2π

T

)2

ε0χ
(3)Aeff

√
�(ωp1)

√
�(ωp2)

∫

ωs

dω
√

�(ω)
√

�(ωp1 + ωp2 − ω)

× â
†
0(ω,z)â†

0(ωp1 + ωp2 − ω,z)â0(ωp1,z)â0(ωp2,z)e−i
kz + H.c. (A6)

We can extend the integral over the signal over the whole spectrum except for the two pumps’ frequencies and add a factor of
1/2 for double-counting signal and idler frequencies. Then

ĜFWM
nl (z) = 3

2π

T
χ (3) �

2

ε0c2AeffT

√
ωp1

n(ωp1)

ωp2

n(ωp2)

∫
dω

√
ω

n(ω)

√
ωp1 + ωp2 − ω

n(ωp1 + ωp2 − ω)
â
†
0(ω,z)

× â
†
0(ωp1 + ωp2 − ω,z)â0(ωp1,z)â0(ωp2,z)e−i
kz + H.c. (A7)

Now let’s look for the phase modulation term. By definition of phase modulation, we keep only the terms with no phase that
arise from the expansion of the nonlinear momentum, (A3). We then obtain

Ĝ
ph mod
nl (z) =

∫
Aeff

dS ε0χ
(3)

[
6

(
2π

T

) ∑
k=s,i,p1,p2

(∫

ωk

dω�(ω)â†
0(ω,z)â0(ω,z)

)2

+ 12

(
2π

T

) ∑
k=s,i,p1,p2

∑
j �=k

(
2π

T

) ∫

ωk

dω

∫

ωj

dω′�(ω)�(ω′)â†
0(ω,z)â0(ω′,z)â†

0(ω′,z)â0(ω,z)

]
, (A8)

and if we sum over all the frequencies in the integrals, the momentum generator collapses into

Ĝ
ph mod
nl (z) =

(
2π

T

)
2πAeffε0χ

(3)

{
12

∫∫
dωdω′�(ω)�(ω′)â†

0(ω,z)â0(ω′,z)â†
0(ω′,z)â0(ω,z)

− 6
∫

dω
2π

T
[�(ω)â†

0(ω,z)â0(ω,z)]2

}
, (A9)

or

Ĝ
ph mod
nl (z) = 3χ (3) �

2

ε0c2AeffT

[ ∫∫
dωdω′ ω

n(ω)

ω′

n(ω′)
â
†
0(ω,z)â0(ω′,z)â†

0(ω′,z)â0(ω,z)

− 1

2

∫
dω

2π

T

(
ω

n(ω)
â
†
0(ω,z)â0(ω,z)

)2]
. (A10)
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APPENDIX B: LOW-GAIN APPROXIMATION AND DERIVATION OF MODE OPERATORS

We can now derive the mode operators from Eq. (3) for any frequency generated in the fiber, which gives Eqs. (10)–(12).
We proceed by first factoring out the phase modulation with the variable change â0(ω,z) = â′

0(ω,z)ei2γP1z, which gives, for
the generated modes’ FWM evolution,

∂â′
0(ω,z)

∂z
ei2γP1z+i2γP1â

′
0(ω,z)ei2γP1z = 2iγ

√
P1

√
ζ2â

′†
0 (ωp1 + ωp2 − ω,z)â′

0(ωp2,z)e−i(
k−γP1)z + 2iγ P1â
′
0(ω,z)ei2γP1z,

(B1)

so

∂â′
0(ω,z)

∂z
= 2iγ

√
P1

√
ζ2â

′†
0 (ωp1 + ωp2 − ω,z)â′

0(ωp2,z)e−i(
k+γP1)z. (B2)

For the weak pump it gives

∂â′
0(ωp2,z)

∂z
ei2γP1z + i2γP1â

′
0(ωp2,z)ei2γP1z = 2iγ P1â

′
0(ωp2,z)ei2γP1z + 2iγ

√
P1

√
ζ2

T

2π

×
∫

dω

√
ω(ωp1 + ωp2 − ω)

ωp1ωp2
â′

0(ω,z)â′
0(ωp1 + ωp2 − ω,z)ei(
k+γP1)z, (B3)

or

∂â′
0(ωp2,z)

∂z
= 2iγ

√
P1

√
ζ2

T

2π

∫
dω

√
ω(ωp1 + ωp2 − ω)

ωp1ωp2
â′

0(ω,z)â′
0(ωp1 + ωp2 − ω,z)ei(
k+γP1)z. (B4)

The total phase mismatch is now K = 
k + γP1. The modes’ evolution can be solved by performing a Baker-Hausdorff
expansion. If the z evolution of the momentum operator Ĝ(z) is slow enough to be considered to be z independent, which is the
case in a low-gain interaction,

∫ L

0 Ĝnl(z)dz � ĜnlL and â0(ω,L) = e− i
�

ĜnlLâ0(ω,0)e+ i
�

ĜnlL, which gives

â0(ω,L) = â0(ω,0) +
[
â0(ω,0),

i

�
ĜnlL

]
+ 1

2!

[[
â0(ω,0),

i

�
ĜnlL

]
,
i

�
ĜnlL

]

+ 1

3!

[[[
â0(ω,0),

i

�
ĜnlL

]
,
i

�
ĜnlL

]
,
i

�
ĜnlL

]
+ · · · , (B5)

or, given that i
�

[â0(ω,0),Ĝnl(L)] = ( ∂â0(ω,z)
∂z

)z=0,

â0(ω,L) = â0(ω,0) +
(

∂â0(ω,z)

∂z

)
z=0

L +
(

∂2â0(ω,z)

∂z2

)
z=0

L2

2!
+

(
∂3â0(ω,z)

∂z3

)
z=0

L3

3!
+ · · · . (B6)

Development (B6), equivalent to a Taylor expansion for the operators, gives the creation and annihilation operators at the output
of the medium for the generated modes and the weak pump, solutions of Eqs. (B2) and (B4), respectively. Let’s solve (B7) for
the generated modes.

Equation (B2) gives, for the higher-order derivatives,

∂2â′
0(ω,z)

∂z2
= −iK2iγ

√
P1

√
ζ2â

′†
0 (ωp1 + ωp2 − ω,z)â′

0(ωp2,z)e−iKz + 2iγ
√

P1

√
ζ2

∂â
′†
0 (ωp1 + ωp2 − ω,z)

∂z
â′

0(ωp2,z)e−iKz

+ 2iγ
√

P1

√
ζ2â

′†
0 (ωp1 + ωp2 − ω,z)

∂â′
0(ωp2,z)

∂z
e−iKz, (B7)

so

∂2â′
0(ω,z)

∂z2
= −iK2iγ

√
P1

√
ζ2â

′†
0 (ωp1 + ωp2 − ω,z)â′

0(ωp2,z)e−iKz + (2iγ
√

P1

√
ζ2)2â

′†
0 (ω,z)â′

0(ωp2,z)â′
0(ωp2,z)e−iKzeiKz

+ (2iγ
√

P1

√
ζ2)2 T

2π

∫
dω

√
ω(ωp1 + ωp2 − ω)

ωp1ωp2
â

′†
0 (ωp1 + ωp2 − ω,z)â′

0(ω,z)â′
0(ωp1 + ωp2 − ω,z)e−iKze−iKz.

(B8)

Since the quantity γ
√

P1

√
T
2π

ζ2 is very small [it is the square-root number of photons generated in 1 m of medium within
a frequency range of δω; see the link to the efficiency η in Eq. (28)], we will limit our development to the first order in

γ
√

P1

√
T
2π

ζ2. This approximation is physically equivalent to neglecting all the phenomena involving more than a single pair
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creation, in particular here the recombination of a created pair back into pump photons and the Rabi oscillations that can then
occur between signal-idler and pump photon states. Then we have

∂2â′
0(ω,z)

∂z2
= −iK2iγ

√
P1

√
ζ2â

′†
0 (ωp1 + ωp2 − ω,z)â′

0(ωp2,z)e−iKz. (B9)

By doing the same approximation for the third order we get

∂3â′
0(ω,z)

∂z3
= (−iK)22iγ

√
P1

√
ζ2â

′†
0 (ωp1 + ωp2 − ω,z)â′

0(ωp2,z)e−iKz, (B10)

and by an obvious recurrence

∂nâ′
0(ω,z)

∂zn
= (−iK)n−12iγ

√
P1

√
ζ2â

′
0(ωp1 + ωp2 − ω,z)â

′+
0 (ωp2,z)e−iKz. (B11)

Then Eq. (B6) gives

â′
0(ω,L) = â′

0(ω,0) + 2iγ
√

P1

√
ζ2â

′†
0 (ωp1 + ωp2 − ω,0)â′

0(ωp2,0)e−iKL

+∞∑
n=1

Ln

n!
(−iK)n−1.

The power series can be simplified to

+∞∑
n=1

Ln

n!
(−iK)n−1 = L

+∞∑
n=1

(−iKL)

n!

n−1

= L
e−iKL − 1

−iKL
= e− iKL

2 Lsinc

(
KL

2

)
, (B12)

so

â′
0(ω,L) = â′

0(ω,0) + 2iγ
√

P1

√
ζ2e

− iKL
2 Lsinc

(
KL

2

)
â

′†
0 (ωp1 + ωp2 − ω,0)â′

0(ωp2,0).

Then with â0(ω,z) = â′
0(ω,z)ei2γP1z,

â0(ω,L)e−i2γP1L = â0(ω,0) + 2iγ
√

P1

√
ζ2e

− iKL
2 Lsinc

(
KL

2

)
â0

†(ωp1 + ωp2 − ω,0)â0(ωp2,0).

APPENDIX C: VALIDITY OF LOW-GAIN
APPROXIMATION

In Appendix B we developed the creation- and annihilation-
operator evolution to the first order in the gain. If η, as defined
in Eq. (28), is much less than 1, it is the efficiency of conversion
of a single photon into a pair. Searching for the precision
of this result, we have to go to higher orders in gain in
the development of Appendix B. Going to the second order
in η allows the possibility of having a pair converted back
into a single photon, which occurs with probability η2, but
the forward single-photon conversion efficiency is unchanged.
Going to the third order in η then lowers the single-photon
conversion efficiency to η − 2η2 + η3. This result allows us

to define the error due to taking the gain to first order
as 2η2.

In principle, η could have an arbitrarily large value by
increasing the strong-pump power. When η approaches and
goes beyond 1, it cannot be defined as a probability of
conversion, and we must solve exactly the operator evolution.
As developed in a classical setting in Ref. [28], elliptic
functions are expected for the beams’ intensity evolution,
giving Rabi-like oscillations between the pump photon and
the signal-idler pair state. As noted in Ref. [14], the higher
η is, the more oscillations will occur in the fiber, but this is
again a theoretical scheme taking only nondegenerate FWM
into account. Parasitic phenomena, in particular self-phase
modulation, will also become ultrahigh in this regime.
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